参考文献 References
[1] Choi J H, Wong A S, Huang H F, et al. Gonadotropins and ovarian cancer. Endocr Rev, 2007;
28
(4)
: 440-461.
[2] Rzepka-Gorska I, Chudecka-Glaz A, Kosmowska B. FSH and LH serum/tumor fluid ratios and malignant tumors of the ovary. Endocr Relat Cancer, 2004;
11
(2)
: 315-321.
[3] Huang Y, Hua K, Zhou X, et al. Activation of the PI3K/AKT pathway mediates FSH-stimulated VEGF expression in ovarian serous cystadenocarcinoma. Cell Res, 2008;
18
(7)
: 780-791.
[4] Mertens-Walker I, Bolitho C, Baxter R C, et al. Gonadotropin-induced ovarian cancer cell migration and proliferation require extracellular signal-regulated kinase 1/2 activation regulated by calcium and protein kinase C-delta. Endocr Relat Cancer, 2010;
17
(2)
: 335-349.
[5] Shih I, Kurman R J. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol, 2004;
164
(5)
: 1511-1518.
[6] Cho K R, Shih I. Ovarian cancer. Annu Rev Pathol, 2009;
4
: 287-313.
[7] Conic I, Dimov I, Tasic-Dimov D, et al. Ovarian epithelial cancer stem cells. Sci World J, 2011;
11
: 1243-1269.
[8] Ahmed A A, Etemadmoghadam D, Temple J, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol, 2010;
221
(1)
: 49-56.
[9] Dubeau L. The cell of origin of ovarian epithelial tumours. Lancet Oncol, 2008;
9
(12)
: 1191-1197.
[10] Piek J M, van Diest P J, Zweemer R P, et al. Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J Pathol, 2001;
195
(4)
: 451-456.
[11] Levanon K, Crum C, Drapkin R. New insights into the pathogenesis of serous ovarian cancer and its clinical impact. J Clin Oncol, 2008;
26
(32)
: 5284-5293.
[12] Schlichtholz B, Turyn J, Goyke E, et al. Enhanced citrate synthase activity in human pancreatic cancer. Pancreas, 2005;
30
(2)
: 99-104.
[13] Lu C, Venneti S, Akalin A, et al. Induction of sarcomas by mutant IDH2. Genes Dev, 2013;
27
(18)
: 1986-1998.
[14] Gupta S C, Hevia D, Patchva S, et al. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal, 2012;
16
(11)
: 1295-1322.
[15] Pelicano H, Lu W, Zhou Y, et al. Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res, 2009;
69
(6)
: 2375-2383.
[16] Zhang Y, Wang H, Qian Z, et al. Low-voltage-activated T-type Ca2+ channel inhibitors as new tools in the treatment of glioblastoma: the role of endostatin. Pflugers Arch, 2014;
466
(4)
: 811-818.
[17] Gorlach A, Bertram K, Hudecova S, et al. Calcium and ROS: A mutual interplay. Redox Biol, 2015;
6
: 260-271.
[18] Zhang W M, Zhou J, Ye Q J. Endothelin-1 enhances proliferation of lung cancer cells by increasing intracellular free Ca2+. Life Sci, 2008;
82
(13-14)
: 764-771.
[19] Raphael M, Lehen'Kyi V, Vandenberghe M, et al. TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc Natl Acad Sci U S A, 2014;
111
(37)
: E3870-E3879.
[20] Baysal B E. Role of mitochondrial mutations in cancer. Endocr Pathol, 2006;
17
(3)
: 203-212.
[21] Cecil Han, Lifeng Yang, Hyun Ho Choi, et al. Amplification of USP13 drives ovarian cancer metabolism. Nat Commun, 2016;
7
(13525)
: -.
[22] Zhihong Ai, Yang Lu, Songbo Qiu, et al. Overcoming cisplatin resistance of ovarian cancer cells by targeting HIF-1-regulated cancer metabolism. Cancer Lett, 2016;
373
(1)
: 36-44.
[23] Zou J, Wang Y, Liu M, et al. Euxanthone inhibits glycolysis and triggers mitochondria-mediated apoptosis by targeting hexokinase 2 in epithelial ovarian cancer. Cell Biochem Funct, 2018;
36
(6)
: 303-311.
[24] Lu Xu, Qi Xie, Ling Qi, et al. Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells. Oncol Rep, 2019;
39
(3)
: 985-992.
[25] Stimpson S E, Coorssen J R, Myers S J. Optimal isolation of mitochondria for proteomic analyses. Anal Biochem, 2015;
475
: 1-3.
[26] Hartwig S, Feckler C, Lehr S, et al. A critical comparison between two classical and a kit-based method for mitochondria isolation. Proteomics, 2009;
9
(11)
: 3209-3214.
[27] Song G, Hu C, Zhu H, et al. Comparative proteomics study on liver mitochondria of primary biliary cirrhosis mouse model. BMC Gastroenterol, 2013;
13
: 64-.
[28] Scheffler N K, Miller S W, Carroll A K, et al. Two-dimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SH-SY5Y neuroblastoma cell line. Mitochondrion, 2001;
1
(2)
: 161-179.
[29] Wittig I, Carrozzo R, Santorelli F M, et al. Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta, 2006;
1757
(9-10)
: 1066-1072.
[30] Taylor S W, Fahy E, Zhang B, et al. Characterization of the human heart mitochondrial proteome. Nat Biotechnol, 2003;
21
(3)
: 281-286.
[31] Techritz S, Lutzkendorf S, Bazant E, et al. Quantitative and qualitative 2D electrophoretic analysis of differentially expressed mitochondrial proteins from five mouse organs. Proteomics, 2013;
13
(1)
: 179-195.
[32] Ferreira R, Vitorino R, Alves R M, et al. Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics, 2010;
10
(17)
: 3142-3154.
[33] Song G, Hu C, Zhu H, et al. Comparative proteomics study on liver mitochondria of primary biliary cirrhosis mouse model. BMC Gastroenterol, 2013;
13
: 64-.
[34] Techritz S, Lutzkendorf S, Bazant E, et al. Quantitative and qualitative 2D electrophoretic analysis of differentially expressed mitochondrial proteins from five mouse organs. Proteomics, 2013;
13
(1)
: 179-195.
[35] Tian Y, Tan A C, Sun X, et al. Quantitative proteomic analysis of ovarian cancer cells identified mitochondrial proteins associated with Paclitaxel resistance. Proteomics Clin Appl, 2009;
3
(11)
: 1288-1295.
[36] Chen X, Wei S, Ma Y, et al. Quantitative proteomics analysis identifies mitochondria as therapeutic targets of multidrug-resistance in ovarian cancer. Theranostics, 2014;
4
(12)
: 1164-1175.
[37] Chen M, Huang H, He H, et al. Quantitative proteomic analysis of mitochondria from human ovarian cancer cells and their paclitaxel-resistant sublines. Cancer Sci, 2015;
106
(8)
: 1075-1083.